Information in the Nonstationary Case

نویسندگان

  • Vincent Q. Vu
  • Bin Yu
  • Robert E. Kass
چکیده

Information estimates such as the direct method of Strong, Koberle, de Ruyter van Steveninck, and Bialek (1998) sidestep the difficult problem of estimating the joint distribution of response and stimulus by instead estimating the difference between the marginal and conditional entropies of the response. While this is an effective estimation strategy, it tempts the practitioner to ignore the role of the stimulus and the meaning of mutual information. We show here that as the number of trials increases indefinitely, the direct (or plug-in) estimate of marginal entropy converges (with probability 1) to the entropy of the time-averaged conditional distribution of the response, and the direct estimate of the conditional entropy converges to the time-averaged entropy of the conditional distribution of the response. Under joint stationarity and ergodicity of the response and stimulus, the difference of these quantities converges to the mutual information. When the stimulus is deterministic or nonstationary the direct estimate of information no longer estimates mutual information, which is no longer meaningful, but it remains a measure of variability of the response distribution across time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stationary - NonStationary Process and The Variable Roots Difference Equations

Stochastic, processes can be stationary or nonstationary. They depend on the magnitude of shocks. In other words, in an auto regressive model of order one, the estimated coefficient is not constant. Another finding of this paper is the relation between estimated coefficients and residuals. We also develop a catastrophe and chaos theory for change of roots from stationary to a nonstationary one ...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Foreign Exchange Rate Pricing at the Future Contract (Case of I.R. of Iran)

The RER which is theoretically influenced by the real interest rate differential (RRE) and currency excess return (CER), is statistically examined during 1990-2016. Accordingly, the stationarity of RER as null hypothesis is not approved in the Iranian economy. Therefore, the TVAR method is examined to analyze the nonstationary RER sample to two sub-periods stationary process which are both stat...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2009